

 Navigation

 	
 index

 	infocards 0.5.1 documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a docs/index.rst or docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	infocards 0.5.1 documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 access_archive.html

 Navigation

 		
 index

 		infocards 0.5.1 documentation »

 All the operations in the database are performed through the Archive. This is just a structured database that may use MySQL, PostgreSQL or SQLite as a backend. All the tables are automatically created upon connection when needed.

Note that in order to use the first two, you will need the modules specified in the installation section.

The Archive is initialized using key-value pairs for each of the connectors available. The keys db_name and db_type are the only ones that are always necessary, while the rest are directly passed to the connector.

Using MySQL

Connection to a MySQL database is done through the PyMySQL module.

from infocards.archive import Archive

arc = Archive(
 db_name='my_db',
 db_type='mysql',
 user='mysql_user',
 password='mysql_password',
 host='mysql_host',
 port=1234
)

Using PostgreSQL

Connection to a PostgreSQL database is done through the psycopg2 module.

from infocards.archive import Archive

arc = Archive(
 db_name='my_db',
 db_type='postgres',
 user='postgres_user',
 password='postgres_password',
 host='postgres_host',
 port=1234
)

Using SQLite

Connection to a SQLite database is done through the buil-in sqlite3 module.

from infocards.archive import Archive

arc = Archive(
 db_name='/path/to/db',
 db_type='sqlite',
)

 © Copyright .
 Created using Sphinx 1.3.1.

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		infocards 0.5.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment.png

ops_archive.html

 Navigation

 		
 index

 		infocards 0.5.1 documentation »

 The following examples suppose a SQLite connection, however they are exactly the same for the other database types:

from infocards.archive import Archive

arc = Archive(
 db_name='/path/to/db',
 db_type='sqlite',
)

Creating a card

Make sure that you use a unique title!

my_new_card = ar.new_card(
 'My title',
 'My short description',
 'My main content. Can be very long.',
 'my space separated tags',
 'rmed'
)

When creating a new card, a CardObj instance with the information you entered is returned. Also note that the last argument is completely optional, and if left empty it will default to 'UNKNOWN'.

Creating a section

Again, make sure you use a unique name!

my_new_section = ar.new_section('Section name')

Similar to [creating a card](#Creating a card), returns a SectionObj instance of the newly created section.

Deleting a card

In order to delete a card, you may identify it by id which has higher priority,or by title:

Deleting a card by id
ar.delete_card(cid=23)

Deleting a card by title
ar.delete_card(title='My title')

You can also specify both, but id will take preference
ar.delete_card(title='My title', cid=23)

Deleting a card will also delete all the Relations the card appeared in.

Deleting a section

Pretty similar to [deleting a card](#Deleting a card), but instead of title, you can identify a section by name:

Deleting a section by id
ar.delete_section(sid=23)

Deleting a card by title
ar.delete_section(name='My title')

You can also specify both, but id will take preference
ar.delete_section(name='My title', sid=23)

Deleting a section will also delete all the Relations the section appeared in.

Adding a card to a section

Card and Section can be specified by id
ar.add_card_to_section(self, cid=23, sid=2)

or by title and name
ar.add_card_to_section(self, ctitle='My title', sname='Section name')

Removing a card from a section

Pretty similar to the [addition case](#Adding a card to a section):

Card and Section can be specified by id
ar.remove_card_from_section(self, cid=23, sid=2)

or by title and name
ar.remove_card_from_section(self, ctitle='My title', sname='Section name')

Getting a list of cards

This is a generator!
cards = ar.cards()

for c in cards:
 print(c.id, c.title)

Note that this returns a generator!

Getting a list of sections

This is a generator!
sections = ar.sections()

for s in sections:
 print(s.id, s.name)

Note that this returns a generator!

Getting a single card

A single card is obtained either by id or by title, although priority is given to the id:

Getting by id
card = ar.get_card(cid=23)

Getting by title
card = ar.get_card(title='My title')

Getting the sections a card appears in

Once you obtain a card, you can find out which sections it appears in very easily:

This is a generator!
sections = card.sections()

for s in sections:
 print(s.id, s.name)

Note that this returns a generator!

Getting a single section

In this case, a section can be obtained either by id or name, although priority is given to the name:

Getting by name
section = ar.get_section(name='My section')

Getting by id
section = ar.get_section(sid=23)

Getting the cards present in a given section

Once you obtain a section, you can also find out the cards contained in that specific section:

This is a generator!
cards = section.cards()

for c in cards:
 print(c.id, c.title)

Note that this returns a generator!

Modifying a card

In order to modify a card in the archive, you may follow a couple of approaches:

		Object approach: from a previously obtained card, edit its fields and use them to update the card. Note that all the fields present in the object will be used in the update.

First we obtain a card
card = ar.get_card(cid=23)

Modify some values
card.title = 'New title'
card.content = 'Now with more content than ever!'
card.tags += ' new tags for my list'

Update the card
card = ar.modify_card(card=card, author='rmed')

		Argument approach: specify the arguments to update manually. Only those arguments passed to the function will be updated.

Specify the values
title = 'New title'
content = 'Noew with more content than ever!'
tags = 'a few tags to substitute'

We may also specify the card by title
card = ar.modify_card(cid=23, title=title, content=content, tags=tags)

Note that both of these return the updated instance of the card, or None if the card to modify does not exist.

Renaming a section

As before, you can identify the section to modify either by id or name:

By id
newsec = ar.rename_section('New name', sid=13)

By name
newsec = ar.rename_section('New name', oldname='My section')

This returns a SectionObj instance with the new name.

Searching for cards

When searching for cards in the archive, you may do so in the whole archive or narrow the search to a specific section. The search query should be a string of whitespace separated terms that will be compared against each card.

There are two additional arguments here:

		likelihood: indicates percentage for which to words are considered similar

		relevance: indicates percentage of query terms that should be present in a card for it to be considered relevant

Generally speaking, default values likelihood=80 and relevance=50 should suffice most of the cases, but feel free to play with it to adapt it to your needs.

Simple search in all the archive
result = ar.search('my search query')

Search in a specific section by id
result = ar.search('my search query', sid=13)

Search in a specific section by name
result = ar.search('my search query', sname='My section')

Modify search relevance arguments
result = ar.search('my search query', likelihood=50, relevance=10)

for card in result:
 print(card.id, card.title)

Note that this returns a generator!

 © Copyright .
 Created using Sphinx 1.3.1.

_static/down.png

_static/minus.png

_static/ajax-loader.gif

_static/plus.png

_static/comment-bright.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/up-pressed.png

reference/archive.html

 Navigation

 		
 index

 		infocards 0.5.1 documentation »

Archive API reference

Package: infocards.archive

The following shows relevant information on the Archive and its functions.

Archive(**kwargs)

Main component of the library, performs all the operations in the database.

Parameters

Common parameters:

		db_name (str): name of the database. Will be passed directly to the database connector. In the case of SQLite, it should be the path to the database file.

		db_type (str): either mysql, postgres or sqlite

Specific parameters for MySQL and PostgreSQL connectors:

		host (str): host of the database

		user (str): username of the database host

		password (str): password used to connect to the host

		port (int): port of the database system

Additional parameters may be required depending on the connector used. Check the documentations for PyMySQL [https://github.com/PyMySQL/PyMySQL] and psycopg2 [http://initd.org/psycopg/].

Returns

Archive object.

Raises

ArchiveConnectionException or ArchiveConfigException.

Functions

add_card_to_section(cid=0, ctitle=””, sid=0, sname=””)

Creates a card-section relation.

Parameters

		cid (int): card id used to identify the card for the relation

		ctitle (str): unique title of the card

		sid (int): section id used to identify the section for the relation

		sname (str): unique name of the section

In both cases, either the id or the title/name can be used to perform the identification.

Returns

True if the relation was created, otherwise False

cards()

Obtain all the cards in the archive

Returns

Generator: CardObj for each of the cards in the archive.

delete_card(cid=0, title=””)

Deletes a card from the archive, as well as all the Relations the card was present int.

Parameters

		cid (int): card id

		title (str): unique card title

Either the id or the title can be used to perform the identification.

Returns

True if the card was deleted, otherwise False

delete_section(name=””, sid=0)

Delete a section from the archive, as well as all the Relations the section was present in.

Parameters

		name (str): unique section name

		sid (int): section id

Either the name or the id can be used to perform the identification.

Returns

True if the section was deleted, otherwise False

get_card(cid=0, title=””)

Obtains a single card from the archive.

Parameters

		cid (int): card id

		title (str): unique card title

Either the id or the title can be used to perform the identification.

Returns

CardObj with the card information or None if the card was not found.

get_section(name=””, sid=0)

Obtains a single section from the archive.

Parameters

		name (str): unique section name

		sid (int): section id

Either the name or the id can be used to perform the identification.

Returns

SectionObj with the section information or None if the section was not found.

modify_card(card=None, cid=0, ctitle=””, title=””, desc=””, content=””, tags=””, author=”UNKNOWN”)

Updates a card in the database.

Parameters

		card (CardObj): card from which to obtain all the information for the modification (has higher priority than the rest of the parameters)

		cid (int): id of the card to modify

		ctitle (str): unique title of the card to modify

		title (str): new title for the card

		desc (str): new description for the card

		content (str): new content for the card

		tags (str): whitespace separated tags for the card

		author (str): name of the author of the modification

Note that if card is not used, only the parameters that have been specificed will be overwritten. The modification timestamp of the card will be automatically set to the current date and time.

Returns

New CardObj instance of the updated card.

Raises

ArchiveIntegrityException

new_card(title, desc, content, tags, author=”UNKNOWN”)

Creates a new card in the archive.

Parameters

		title (str): unique title for the new card

		desc (str): short description for the card

		content (str): main content of the card, may be multiline

		tags (str): whitespace separated tags for the card

		author (str): name of the author of the new card

The modification timestamp will be automatically set to the current date and time.

Returns

New CardObj instance of the created card.

Raises

ArchiveIntegrityException

new_section(name)

Creates a new section in the archive.

Parameters

		name (str): unique name for the new section

Returns

New SectionObj instance of the created section.

Raises

ArchiveIntegrityException

remove_card_from_section(cid=0, ctitle=””, sid=0, sname=””)

Removes a card-section relation.

Parameters

		cid (int): card id used to identify the card for the relation

		ctitle (str): unique title of the card

		sid (int): section id used to identify the section for the relation

		sname (str): unique name of the section

In both cases, either the id or the title/name can be used to perform the identification.

Returns

True if the relation was deleted, otherwise False

rename_section(newname, oldname=””, sid=0)

Rename a section of the archive

Parameters

		newname (str): new name for the section (should not exist already)

		oldname (str): old name of the section, used for identification

		sid (int): section id

In order to identify the section, either its old name or id can be used.

Returns

New SectionObj instance with the updated name.

Raises

ArchiveIntegrityException

search(query, sname=””, sid=0, likelihood=80, relevance=50)

Perform a search in the archive to find relevant cards. By default, it performs the search through all the cards of the archive, but it is also possible to narrow the search to those cards present in the specified section.

Parameters

		query (str): whitespace separated query terms

		sname (str): name of the section in which to perform the search

		sid (int): unique id of the section in which to perform the search

		likelihood (int): percentage for which two words are considered similar

		relevance (int): percentage of query terms that a card must contain for it to be considered relevant to the search.

Returns

Generator: cards relevant to the search, or an empty list if no cards were found.

sections()

Obtain all the sections in the archive

Returns

Generator: SectionObj for each of the sections in the archive.

 © Copyright .
 Created using Sphinx 1.3.1.

archive.html

 Navigation

 		
 index

 		infocards 0.5.1 documentation »

Structure

The Archive is structured using three tables:

Table | Data
— | —
card | contains all the cards stored in the Archive
section | contains all sections stored in the Archive
relation | contains relations between cards and sections

Relation management is automatically done by the Archive, so you should not need using it directly. It is simply used to determine what cards belong to which section (if any) and what sections a card is present in.

Cards

Card objects are the ones used to represent the relevant information, their structure is as follows:

Field | Type | Data
— | — | —
id | int | unique id of the card in the database
title | str | unique title of the card
desc | str | small description showing the contents, or topic, of the card
content | str | main text of the card, may be several lines long
tags | str | whitespace separated words that will be used when searching
modified | timestamp | timestamp of the latest modification of the card
modified_by | str | displays who has performed the latest modification and is completely optional

Sections

Sections are far more simple in comparison:

Field | Type | Data
— | — | —
id | int | unique id of the section in the database
name | str | unique name of the section

Relations

Relations are formed by a unique composite key using section id and card id.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/models.html

 Navigation

 		
 index

 		infocards 0.5.1 documentation »

Models API Reference

Package: infocards.models

The following shows all the relevant information regarding usage of models in infocards.

BaseModel

This is the model that all the ORM-related models use as a base.

class BaseModel(Model):
 class Meta:
 database = _db_proxy

The database of the model is specified at the time of creation of an Archive.

Card

This is the model that the ORM uses to store card information in the database.

class Card(BaseModel):
 title = CharField(unique=True)
 desc = CharField()
 content = TextField()
 tags = CharField()
 modified = DateTimeField()
 modified_by = CharField()

You should not access this class directly in order to prevent issues.

CardObj(card)

The object representation of the previous model. This is the object type that is returned in all the functions of the Archive that query for cards and can be easily modified.

Parameters

		card: Card instance obtained from querying the database.

When a CardObj is created, it copies all the information from the card parameter. This object can then modified and used to update a record in the database.

Functions

sections()

sec = card.sections()

Returns

Generator: sections in which this card appears in.

Section

This is the model that the ORM uses to store section information in the database.

class Section(BaseModel):
 name = CharField(unique=True)

You should not access this class directly in order to prevent issues.

SectionObj(section)

The object representation of the previous model. This is the object type that is returned in all the functions of the Archive that query for sections.

Parameters

		section: Section instance obtained from querying the database.

When a SectionObj is created, it copies all the information from the section parameter.

Functions

cards()

cards = section.cards()

Returns

Generator: cards present in this section.

Relation

This is the model that stores relations between cards and sections. Generally, it should not be necessary to access it in any way.

class Relation(BaseModel):
 section = ForeignKeyField(Section)
 card = ForeignKeyField(Card)

 class Meta:
 primary_key = CompositeKey('section', 'card')

 © Copyright .
 Created using Sphinx 1.3.1.

